

THE AMALGAMATED SUGAR COMPANY LLC

3184 ELDER STREET • BOISE, ID 83705 PHONE: (208) 383-6500 • FAX: (208) 383-6688

February 23, 2007

Idaho Department of Environmental Quality Air Quality Permit to Construct Fees Fiscal Office 1410 North Hilton Boise, ID 83706-1255

RE:

Modification Request No. 6 Evaporator Permit to Construct (No. 067-00001)

2007 Juice Run

The Amalgamated Sugar Company LLC (TASCO) Mini-Cassia Facility

Dear Sir or Madam:

Enclosed is the \$1,000 check for the application fee for the attached PTC modification request for the No. 6 Evaporator Permit to Construct (No. 067-00001).

If you have any questions please call Alan Hieb at (208) 438-2115 or me at (208) 383-6500.

Sincerely,

Dean C. DeLorey

Manager of Environmental Compliance The Amalgamated Sugar Company LLC

Dlan C. Dl Forly

DCD:ss

Cc:

Boise - Pete Chertudi, John McCreedy, Mike Skromyda

Mini-Cassia – Alan Hieb, Karen Cummings

RECEIVED

FEB 2-3 2007

THE AMALGAMATED SUGAR COMPANY LLC

3184 ELDER STREET . BOISE, ID 83705 PHONE: (208) 383-6500 • FAX: (208) 383-6688

February 23,2007

Steve VanZandt Air Quality Science Officer Idaho Department of Environmental Quality 1363 Fillmore Street Twin Falls, ID 83301

RE: Request for Temporary Permit Modification

No. 6 Evaporator Permit to Construct (No. 067-00001)

The Amalgamated Sugar Company LLC (TASCO) Mini-Cassia Facility

Dear Steve:

The Amalgamated Sugar Company LLC (TASCO) requests to temporarily modify the steam loading limitation in Permit to Construct (PTC) No. 067-00001. This request has been prepared in accordance with Idaho's procedures for revising Permits to Construct in IDAPA 58.01.01.209.04.

TASCO requests to temporarily increase the annual steam loading limitation in Condition 2.4 from 1,830,000 Klbs per campaign year to 1,940,000 Klbs per campaign year. Supporting documentation for this permit modification request is included in the following attachments:

- Attachment A -Certification Statement
- Proposed Permit Revision Attachment B -
- Attachment C -**Emission Estimates**
- Attachment D Ambient Impact Analysis
- Revised Draft of Condition 2.4 of Permit to Construct No. 067-00001 Attachment E -

If you have any questions, fee free to contact either Dean C. DeLorey at (208) 383-6532 or me at (208) 438-2115.

Sincerely,

K. Pete Chertudi Sr. Vice President

The Amalgamated Sugar Company LLC

REGEIVED

FEB 2 3 2007

Department of Environmental Quality

State Air Program

DCD/ss

cc:

Attachment

IDEO – Bill Rogers, Boise

Boise - John McCreedy, Dean DeLorey, Mike Skromyda

Mini-Cassia – Alan Hieb, Karen Cummings

H:\Mini Cassia No 6 Evaporator\No. 6 Evap PTC Revision Temp Steam Inc MC Feb 2007\07Feb20pc1 Cover Letter.doc

Attachment A

Certification Statement

Based on information and belief formed after reasonable inquiry, I certify the statements and information in this document are true.

Signature of Owner or Responsible Official

K. Pete Chertudi

Senior Vice President

Date

Attachment B

Proposed Temporary Permit Revision No. 6 Evaporator PTC

ATTACHMENT B Proposed Temporary Permit Revision No. 6 Evaporator PTC

Overview

The Amalgamated Sugar Company LLC (TASCO) proposes to temporarily increase the annual steam loading limitation in the No. 6 Evaporator Permit to Construct (No. 067-00001). TASCO proposes to increase the annual steam production limitation in Condition 2.4 from 1,830,000 Klbs per year to 1,940,000 Klbs per year for the 2006 beet campaign year. This increase is needed while IDEQ processes the Tier II Operating Permit/Permit to Construct application originally submitted to IDEQ on September 1, 2004. A Tier II Operating Permit/PTC is expected to be issued by IDEQ with a new annual steam loading limit by the start of the 2007 beet campaign in September 2007.

Project Description

The annual steam loading increase is needed to avoid the shipment of approximately 64,000 tons of thick juice from the Mini-Cassia facility for processing at other TASCO facilities. The Mini-Cassia facility has eight (8) thick juice storage tanks. Following the beet campaign, stored thick juice is transferred to the sugar end and processed into granulated sugar. Due to a number of factors, the 1,830,000 Klbs steam per year limit will be reached after only 6 of 8 juice tanks are processed. To process the 2006 beet crop and all 8 juice tanks, a total of approximately 1,940,000 Klbs steam is required.

There are both environmental and economic benefits for processing the two remaining tanks of thick juice at the Mini-Cassia facility. Shipping of thick juice will result in increased on-road mobile emissions from diesel-fueled vehicles required to transport the 64,000 tons of juice. The cost to transport the juice is estimated at approximately \$400,000. The Nampa and Twin Falls facilities are less energy efficient than the Mini-Cassia facility. Therefore, more fuel and associated emissions will be generated to process the thick juice at the other facilities.

Equipment Changes

There are no equipment changes associated with this requested permit change which will increase emissions. To offset the emissions increases due to increased hours of operation, overfire air system and/or flue gas recirculation air system improvements and/or fine tuning will be implemented on the B&W stoker coal-fired boiler (see Attachment C.1). As per EPA guidance, overfire air system improvements will decrease NO_x emissions by up to 30%.

Emissions

Since only one boiler and the sugar end equipment operate during the juice run, daily emissions are only a fraction of the beet campaign¹. In order to process all eight juice tanks, an additional 110,000 Klbs steam above the 1,830,000 Klb limit will be required.

H:\Mini Cassia No 6 Evaporator\No. 6 Evap PTC Revision Temp Steam Inc MC Feb 2007\07Feb20 MC No 6 Evap Permit Att B.doc

¹ During the beet campaign, all emission sources are operating including the boilers, pulp dryers and lime kilns.

Juice run boiler steam can be provided by any one of the following three boilers at the Mini-Cassia facility: 1) B&W coal-fired stoker boiler; 2) Erie City pulverized coal and natural gas-fired boiler; and 3) Nebraska backup natural gas-fired boiler. The B&W and Erie City boilers normally operate during the juice run. For example, during last year's 2006 juice run, the B&W and Erie City boilers operated for 76 and 42 days, respectively.

Estimated emissions for an additional 110,000 Klbs steam per year are provided in Attachment C.2 for each boiler. For the Erie City boiler, estimates are provided for coal and natural gas. The preferred alternative is to operate the B&W boiler on coal.

In order to offset the emissions increases, TASCO proposes to operate the B&W boiler with combustion air improvements or operate the Erie City boiler or Nebraska boiler on natural gas only. This will ensure that boiler emissions from the processing of the 2 remaining thick juice storage tanks are below the significance levels (see Attachment C.3).

Ambient Air Quality Impact Analysis

A conservative ambient air quality impact analysis was conducted for the 2007 juice run including the additional 110,000 Klb steam increase. Though not required, short-term ambient impacts were evaluated. In addition, total annual juice run emissions were evaluated. As shown in Attachment D, predicted air pollutant concentrations are all conservatively well below the National Ambient Air Quality Standards (NAAQS).

Regulatory Analysis – Toxic Air Pollutants (TAP's)

In accordance with Idaho's TAP's preconstruction standards (IDAPA 58.01.01.210), net annual increases of trace elements from boiler operation during the juice run were evaluated. As shown in Appendix C, net annual emissions were estimated for a 110,000 Klbs increase, based on the No. 6 Evaporator PTC application submitted to IDEQ on August 11, 2002. Since estimated net emissions are greater than the screening levels in IDAPA 58.01.01.526 an air quality impact analysis was conducted and is provided in Attachment D.

Regulatory Analysis – Criteria Pollutants

Increasing the steam production limit will result in only minor emissions increases. Attachment E includes proposed revisions to the No. 6 Evaporator PTC issued by IDEQ on June 14, 2006. Proposed revisions include federally enforceable limits which ensure emissions from the 110,000 Klb steam increase remain below significance levels. As a result, this is a minor modification to the No. 6 Evaporator PTC.

Attachment C

Emission Estimates

Attachment C.1

Combustion Air System Improvements
B&W Boiler
Mini-Cassia Facility

Combustion Air Tuning / NO_x Reduction B&W Boiler Mini-Cassia Facility

Juice Run 2007

To reduce nitrogen oxide (NO_x) emissions from its Mini-Cassia facility, TASCO is proposing to perform the following on the facility's B&W boiler:

- a.) Fine tune boiler combustion air system and /or
- b.) Improve the overfire air (OFA) and/or
- c.) Install a flue gas recirculation (FGR) system.

These items can provide NOx control for both stoker and pulverized coal (PC) boilers.

EPA recognizes a modern, properly operating OFA system has the potential to reduce NO_x emissions by 20-30 % (AP-42, Table 1.1-2). On a stoker boiler, the principle behind using OFA for NO_x control is to create "staged" combustion zones by properly controlling the distribution of undergrate and overfire air. By controlling the distribution of combustion air above and below the grate, more efficient combustion can be accomplished without the addition of excessive airflows.

Flue gas recirculation (FGR) is also recognized as a NO_x control option for boiler flue gases. FGR systems have shown the potential to reduce NO_x emissions in industrial boilers by recirculating a portion of the boiler flue gas (up to 20 percent) into the combustion air stream. This process reduces the maximum combustion temperature and reduces the percentage of oxygen in the combustion air/flue gas mix.

By executing the proposed improvements on the B&W boiler, a 25% NO_x reduction is expected (See Table I, below.).

Table I.

NO. Emission Factors for B&W Stoker Boiler

1 (O X 22221DDXO12 2 000 002	
Current Emission Factor	1.24 lbs. $NO_x / 1000$ lbs. steam
Target Emission Factor	0.93 lbs. $NO_x / 1000$ lbs. steam

Table 1.1-2. NO, CONTROL OPTIONS FOR COAL-FIRED BOILERS*

7.N	LNB with OFA new burner designs and injection of air above main combustion zone	Low NO _x Burners New burner Pulverized coal designs boilers controlling airfuel mixing	Injection of air above main combustion zone	Operational Rearrangement of modifications (BOOS, LEA, BF, or combination) Rearrangement of main combustion designs); Stoke combination zone (LEA only)	Load reduction Reduction of coal Stokers and air	Combustion Modifications Description of Applications Description of Applications
Pulverized coal boilers, cyclone finnaces	Pulverized coal 40 - 60 boilers	zed coal 35 - 55	Pulverized coal 20 - 30 boilers and stokers	Pulverized coal 10 - 20 boilers (some designs); Stokers (LEA only)	Minimal	Applicable Boiler Potential ^b Designs (%)
Commercially available but not widely demonstrated	Available	Available	Available	Available	Available	Availability/R & D Status
Rebum fuel can be natural gas, fuel oil, or pulverized coal. Must have sufficient furnace height to retrofit this technology to existing boilers.	Available in new boiler designs and can be retrofit in existing boilers with sufficient furnace height above top row of burners.	Available in new boiler designs and can be retrofit in existing boilers.	Must have sufficient funace height above top row of burners in order to retrofit this technology to existing boilers.	Must have sufficient operational flexibility to achieve NO _x reduction potential without sacrificing boiler performance.	Applicable to stokers that can reduce load without increasing excess air, may cause reduction in boiler efficiency, NO _x reduction varies with percent load reduction.	Comments

BOOS – Burners out of service LEA – Low excess air BF – biased burner firing OFA – Over-fire air LNB – Low NOx Burners

Attachment C.2

Boiler House Emission Data Summary 110,000 Klbs Steam Mini-Cassia Facility

BoilerNGEmissions.xls2/21/2007

EMISSION DATA SUMMARY - BOILER HOUSE 2007 Juice Run 110,000 klbs steam Net Steam Increase

				Z		Emissions
S	BOILER	POLLUTANT	IND	LB/UNIT	REFERENCE	tons/y
S-B1	B & W BOILER	PM/PM10	1000 lbs steam	0.177	PM compliance test Dec 2003	9.7
	- STEAM (coal)	SO2	1000 lbs steam	0.440	AP-42, 9/98, Table 1.1-3 & 80 % scrubber control	24.2
		802	1000 lbs steam	0.184	Eng. Stack Test Nov. 2002	10.1
		00	1000 lbs steam	0.316	AP-42, 9/98, Table 1.1-3	17.4
		NOx	1000 lbs steam	1.24	Oct. 2005 Engineering Stack Test	68.2
		NOx	1000 lbs steam	0.93	25% Reduction with Overfire Air	51.2
		VOC	1000 lbs steam	0.0047	TNMOC	0.3
S-B2	ERIE CITY BOILER	PM/PM10	1000 lbs steam	0.306	IDAPA 58.01.01.677 (0.1 gr/dscf at 8% O_2)	16.8
SOLUTION STATES	- STEAM (coal)	PM10	1000 lbs steam	0.306	Assume PM10 is 100% of PM	16.8
		802	1000 lbs steam	0.131	Eng. Stack Test Nov. 2002	7.2
		00	1000 lbs steam	0.020	Eng. Stack Test Feb. 2005	
ahitimiken)		NOx	1000 lbs steam	1.29	Oct. 2005 Engineering Stack Test	71.0
		VOC	1000 lbs steam	0.0050	AP-42 9/98, Table 1.1-19, PC, methane & TNMOC	0.3
S-B2	ERIE CITY BOLLER	PM	1000 lbs steam	2.94E-02	IDAPA 58.01.01.677 (0.015 gr/dscf at 3% O ₂)	1.6
	- STEAM (gas)	PM10	1000 lbs steam	2.94E-02	AP-42, 7/98, Table 1.4-2	1.6
		SO2	1000 lbs steam	8.10E-04	AP-42, 7/98, Table 1.4-2	0.045
		CO	1000 lbs steam	1.10E-01	AP-42, 7/98, Table 1.4-1	6.1
i kina ang mara		XON	1000 lbs steam	3.70E-01	AP-42, 7/98, Table 1.4-1	20.4
		AOC	1000 lbs steam	7.30E-03	AP-42, 7/98, Table 1.4-2	0.4
S-B3	NEBRASKA BOILER	PM	1000 lbs steam	7.50E-03	AP-42, Table 1.4-2 (7/98) for natural gas combustion	0.4
	- STEAM (gas)	PM10	1000 lbs steam	7.50E-03	AP-42, Table 1.4-2 (7/98) for natural gas combustion	0.4
25307-2009-00-2-2		SO2	1000 lbs steam	7.50E-04	AP-42, 7/98, Table 1.4-2	0.04
Ordinal distances		00	1000 lbs steam	9.25E-03	Compliance test at Nampa (Riley Boiler 1/04)	5.0
		NOx	1000 lbs steam	2.50E-01	NSPS NOx	13.8
		VOC	1000 lbs steam	6.70E-03	AP-42, 7/98, Table 1.4-2	0.4

MINI-CASSIA

B&W BOILER (S-B1) – Coal EMISSION FACTORS February 15, 2007

PARTICULATE MATTER (PM10)

A PM compliance test was conducted on the B&W boiler on December 2 and 3, 2003. The stack test report was submitted to IDEQ on March 2, 2004. The results are summarized as follows:

(26.49 lbs/h)/(165 Klbs/h) = 0.161 lbs/Klbs

Assume a 10% back half catch for PM10, then

 $0.161 \times 1.10 = 0.177 \text{ lbs/Klbs}$

SULFUR DIOXIDE (SO₂)

The B&W boiler SO₂ emission factor is based on engineering testing conducted at the Mini-Cassia facility on 11/19/02.

Test results show an average emissions rate over three runs of 28.3 lbs SO₂/hour. Steam loading rate during these tests average 154 Klbs/hour.

 $(28.3 LB SO_2/hour)/(154 Klbs steam/hour) = 0.184 lbs SO_2/Klb steam$

NITROGEN OXIDE (NO_X)

The B&W boiler NO_x emission factor is based on engineering testing conducted at the Mini-Cassia facility on 10/14/05.

Test results show an average emissions rate over three runs of 191 lbs NO_x/hour. Steam loading rate during these tests averaged 154 Klbs/hour.

(191 lb $NO_x/hour$)/(154 Klbs steam/hour) = 1.24 lbs NO_x Klb steam

With the installation of over-fire air, assume a 25% NO_x reduction, then 1.24 (1-.25) = 0.93 lbs/Klbs.

MINI-CASSIA

ERIE CITY BOILER (S-B2) – Coal EMISSION FACTORS February 2, 2007

PARTICULATE MATTER (PM10)

The permit based on IDAPA 58.01.01.677 for this boiler is 0.100 grains/dscf corrected at 8% O₂. The maximum capacity of the boiler while firing coal is 220,000 lbs steam/hr and 297 MMBtu input/hr (calculation based on heat content of the steam of 1080 Btu/lb steam and 80% boiler efficiency) and a maximum of 15.3 tons coal/hr. The heat content of coal is conservatively assumed to be 9700 Btu/lb coal. The estimated stack gas flow, from 40 CFR 60 Appendix A Method 19, for sub-bituminous coal combustion, adjusted at 8% O₂:

Fd = 0780 dscf/MMBtu * (20.9/(20.9-8)) = 15,845 dscf/MMBtu at 8% O_2

15,845 dscf/MMBtu * 297 MMBtu/hr * 1hr/60 min = 78,433 dscfm

0.100 grains/dscf * 78,433 dscf/min * 60 min/hr * 1 lb/7000 grains = 67.23 lb/hr

PM Emission Factor = (67.23 lbs/h)(1 h/220 Klbs steam) = 0.306 lbs/Klbs steam

The PM10 fraction is assumed to be 100% of the PM fraction.

PM10 Emission Factor = 0.306 lbs/Klbs steam

SULFUR DIOXIDE (SO₂)

The Erie City boiler SO₂ emission factor is based on engineering testing conducted at the Mini-Cassia facility on 11/19/02.

Test results show an average emissions rate over three runs of 23.5 lbs SO₂/hour. Steam loading rate during these tests average 179.67 Klbs/hour.

 $(23.5 LB SO_2/hour)/(179.67 Klbs steam/hour) = 0.131 lbs SO_2/Klb steam$

NITROGEN OXIDE (NO_X)

The Erie City boiler NO_x emission factor is based on engineering testing conducted at the Mini-Cassia facility on 10/14/05.

Test results show an average emissions rate over three runs of 223 lbs NO_x/hour. Steam loading rate during these tests averaged 173 Klbs/hour.

(223 lb $NO_x/hour$)/(173 Klbs steam/hour) = 1.289 lbs NO_x Klb steam

H:\Mini Cassia No 6 Evaporator\No. 6 Evap PTC Revision Temp Steam Inc MC Feb 2007\05Feb21dd3 MC Erie City Boiler EF.doc

CARBON MONOXIDE (CO)

The CO emissions factor is based on engineering testing conducted at the Mini-Cassia facility on February 16, 2005. Test results measured an average CO emissions rate of 2.95 lbs/h at a steam loading rate of 180,000 lbs/h.

EF = 2.95/180 = 0.02 lbs CO/Klb steam

Attachment C.3

Net Emissions Changes 2007 Juice Run Mini-Cassia Facility

NET EMISSIONS CHANGES - COAL 2007 JUICE RUN MINI-CASSIA FACILITY

110,000 Klbs STEAM INCREASE - 30 DAYS (tons)

Source	PM/PM10	SO ₂	NOx	СО	VOC
B&W ^a	9.7	10.1	51.2	17.4	0.3
Net	9.7	10.1	51.2	17.4	0.3

^a With N0x reduction improvements.

OFFSETS - JUICE RUN - 95 DAYS (tons)

Source	PM/PM10	SO ₂	NOx	СО	VOC
Scenario #1ª	40.3	27.4	215.9	31.1	0.8
Scenario #2 ^b	33.5	30.1	168.1	46.6	0.8
Net	-6.8	2.7	-47.8	15.5	0.0

^a B&W @ 52 days without N0x reduction improvements and Erie City @ 43 days.

OVERALL NET EMISSIONS 2007 JUICE RUN (tons)

Source	PM/PM10	SO ₂	NO_x	CO	VOC
Boilers	2.9	12.8	3.4	32.9	0.3

* * * * * *

PROJECTED NOX EMISSIONS REDUCTIONS (tons) 2007 BEET CAMPAIGN & JUICE RUN

Source	PM/PM10	SO_2	NO_x	CO	VOC
B&W		200 Aug. 1944 SA4	-145	PRE COL CO. TO	

^b B&W @ 81 days with N0x reduction improvements and Erie City @ 14 days.

NET EMISSIONS CHANGES 2007 JUICE RUN MINI-CASSIA FACILITY

110,000 Klbs STEAM INCREASE - 30 DAYS (tons)

Source	PM/PM10	SO ₂	NO_x	CO	VOC
Erie City-Gas	1.6	0.045	20.4	6.1	0.4
Net	1.6	0.0	20.4	6.1	0.4

2005 Juice Run @ 52.0 days without Overfire Air on B&W & 43 day Erie City Operation SUMMARY OF CRITERIA POLLUTANT EMISSIONS Mini Cassia Facility

Table I

	lotal	Table City Boiler @ 43.0 days	Tric Cit. Doiler @ oz.o days	Daily Daily @ Each daily	Source				
		O'D'	ο <i>σ</i>	0 01	Ē	ĵ	Manad	Mater	
	12.5	40.9	20.0	2000					
	9.2	4.0	 	B	_	, ,		3	
	40.3	23./	0.0	and the contraction of the contr	tns/yr	yca	100	mate of	
	72.5	45.9	26.6		lbs/hr	: III	3		
	9.2	5.4	. 00		lbs/h	240	2	τ <u>Μ</u> ΤΟ	
	40.3	23.7	, 0, 0,	THE PERSONAL PROPERTY AND PERSONS ASSESSED.	tns/yr	yea)		***************************************
	47.3	19.7	27.6	SCHOOLSCOOLSCOOLSCOOLSCOOLSCOOLSCOOLSCOO	lbs/hr	max			
	"		3.9	0000000		aVU		S02	
	27.4	10.1	17.2	Commencent and a second	tns/vr	year		-	
- Contraction of the Contraction	50,4	3.0	47.4	CONTRACTOR AND	lbs/hr	max			
	7.1	0.4	6.8 8	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	lbs/h	avg		S	
	31.1	<u>.</u> 5	29.6		tns/vr	year		-	
	379.5	193.5	186.0		hs/hr	max			
	49.3	22.8	26.5	100/11	F (2)	avg	200	NO.	
	215.9	99.8	116.1	51 (C) y 1	tne/ur	year			
	-1 in	0.8	0.7	100/11	ho/hr	max			95.00
		0.1		100711	Fe/5	avg	Č	500	95.00 Juice run (c
	0.8	0.4	0.4	210131	tne/vr	year			lays)

SECTION 3B. PRODUCTION DATA - BOILER HOUSE

NO.		MATERIAL	UNITS	Max Hr	Avg Hr	ANNUAL
S-B1	B & W BOILER	Steam - Beet	1000 lbs	190.0	175	741300
		Coal - Beet	Tons	13.2	11.1	47020
		Steam - Juice	1000 lbs	150.0	150	187200
		Coal - Juice	Tons	13.2	11.1	
S-B2	ERIE CITY BOILER	Steam (Coal)-Beet	1000 lbs	220.0	190	804840
		Coal (1)-Beet	Tons	16.8	13.2	55915
		Steam (Natural Gas)-Beet	1000 lbs	250.0	250	1059000
		Natural Gas (1)-Beet	MMcf	0.286	0.286	
		Steam (Coal)-Juice	1000 lbs	150.0	150	154800
		Coal (1)-Juice	Tons	16.8	12.2	27816
		Steam (Natural Gas)-Juice	1000 lbs	143.0	143	18800
		Natural Gas (1)-Juice	MMcf	0.3	0.2	456

			ΕN	MISSION FACTO	DR (1)
NO.		POLLUTANT	UNIT	LB/UNIT	REFERENCE
S-B1	B & W BOILER	PM	1000 lbs	0.177	PM Compliance Test Dec 2003
	- STEAM(coal)	PM10	1000 lbs	0.177	PM Compliance Test Dec 2003
		SO2	1000 lbs	0.184	Eng. Stack Test Nov. 2002
		CO	1000 lbs	0.316	AP42, 9/98, Table 1.1-3
		NOx	1000 lbs	1.24	Oct. 05 Engineering Stack Test
		VOC	1000 lbs	0.0047	AP-42 9/98, Table 1.1-19, spreader stoker, methane & TNMOC
	- COAL	Lead	Tons	4.20E-04	EPA AP-42,Table 1.1-18
		Fluorine	Tons	6.34E-03	Mass balance based on USGS data
		Beryllium	Tons	2.10E-05	EPA AP-42, Table 1.1-18
		Mercury	Tons	7.00E-05	Mass balance based on USGS data
		H2SO4	Tons	3.31E-01	EPA AP-42, Table 1.1-3, footnote b.
S-B2	ERIE CITY BOILER	PM	1000 lbs	0.306	IDAPA 58.01.01.677 0.1 gr/dscf grain loading standard
	- STEAM (coal)	PM10	1000 lbs	0.306	Assume PM10 is 100% of PM
	• •	SO2	1000 lbs	0.131	Eng. Stack Test Nov. 2002
		CO	1000 lbs	0.020	Eng. Stack Test Feb 2005
		NOx	1000 lbs	1.29	Oct. 05 Engineering Stack Test
		VOC	1000 lbs	0.0050	AP-42 9/98, Table 1.1-19, PC, methane & TNMOC
	- COAL	Lead	Tons	4.20E-04	EPA AP-42, Table 1.1-18
		Fluorine	Tons	6.34E-03	Mass balance based on USGS data
		Beryllium	Tons	2.10E-05	EPA AP-42,Table 1.1-18
		Mercury	Tons	7.00E-05	Mass balance based on USGS data
		H2SO4	Tons	3.31E-01	EPA AP-42,Table 1.1-3, footnote b.

BOILER MCBeetJuice08Feb07Rev1.xls

2005 Juice Run @ 81 days with Overfire Air on B&W & 14 day Erie City Operation SUMMARY OF CRITERIA POLLUTANT EMISSIONS Mini Cassia Facility

Table I

Erie City Boiler @ 14 days Total	Source
S-B2	r D
45.9 72.5	max lbs/hr
1.8 7.7	
7.7 33.5	year tns/yr
26.6 45.9 72.5	max lbs/hr
5.9 1.8 7.7	PM1 avg lbs/t
25.8 7.7 33.5	Sanctain Commission Commission
27.6 19.7 47.3	max lbs/hr
6.1 6.9	SO2 avg lbs/h
26.8 3.3 30.1	
47.4 3.0 50.4	max lbs/hr
10.5 0.1 10.6	CO avg lbs/h
46.1 0.5 46.6	year tns/yr
139.5 193.5 333.0	max lbs/hr
31.0 7.4 38.4	NOx avg lbs/h
135.6 32.5 168.1	year tns/yr
0.7 0.8 1.5	95.00 Juice rui VOC max avg lbs/hr lbs/h
0.2 0.2	voc voc avg lbs/h
0.7 0.1 0.8	year tns/yr

SECTION 3B. PRODUCTION DATA - BOILER HOUSE

NO.		MATERIAL	UNITS	Max Hr	Avg Hr	ANNUAL
S-B1	B & W BOILER	Steam - Beet	1000 lbs	190.0	175	741300
		Coal - Beet	Tons	13.2	11.1	47020
		Steam - Juice	1000 lbs	150.0	150	291600
		Coal - Juice	Tons	13.2	11.1	
S-B2	ERIE CITY BOILER	Steam (Coal)-Beet	1000 lbs	220.0	190	804840
		Coal (1)-Beet	Tons	16.8	13.2	55915
		Steam (Natural Gas)-Beet	1000 lbs	250.0	250	1059000
		Natural Gas (1)-Beet	MMcf	0.286	0.286	
		Steam (Coal)-Juice	1000 lbs	150.0	150	50400
		Coal (1)-Juice	Tons	16.8	12.2	27816
		Steam (Natural Gas)-Juice	1000 lbs	143.0	143	18800
		Natural Gas (1)-Juice	MMcf	0.3	0.2	456

			EMI	SSION FACTO	OR (1)
NO.		POLLUTANT	UNIT	LB/UNIT	REFERENCE
S-B1	B & W BOILER	PM	1000 lbs	0.177	PM Compliance Test Dec 2003
	- STEAM(coal)	PM10	1000 lbs	0.177	PM Compliance Test Dec 2003
		SO2	1000 lbs	0.184	Eng. Stack Test Nov. 2002
		CO	1000 lbs	0.316	AP42, 9/98, Table 1.1-3
		NOx	1000 lbs	0.93	Oct. 05 Eng. Test & Overfireair 25 % Reduction
		VOC	1000 lbs	0.0047	AP-42 9/98, Table 1.1-19, spreader stoker, methane & TNMOC
	- COAL	Lead	Tons	4.20E-04	EPA AP-42, Table 1.1-18
		Fluorine	Tons	6.34E-03	Mass balance based on USGS data
		Beryllium	Tons	2.10E-05	EPA AP-42, Table 1.1-18
		Mercury	Tons	7.00E-05	Mass balance based on USGS data
		H2SO4	Tons	3.31E-01	EPA AP-42, Table 1.1-3, footnote b.
S-B2	ERIE CITY BOILER	PM	1000 lbs	0.306	IDAPA 58.01.01.677 0.1 gr/dscf grain loading standard
	- STEAM (coal)	PM10	1000 lbs	0.306	Assume PM10 is 100% of PM
	# · = · · · · (- · · · ·)	SO2	1000 lbs	0.131	Eng. Stack Test Nov. 2002
		CO	1000 lbs	0.020	Eng. Stack Test Feb 2005
		NOx	1000 lbs	1.29	Oct. 05 Engineering Stack Test
		VOC	1000 lbs	0.0050	AP-42 9/98, Table 1.1-19, PC, methane & TNMOC
	- COAL	Lead	Tons	4.20E-04	EPA AP-42, Table 1.1-18
		Fluorine	Tons	6.34E-03	Mass balance based on USGS data
		Beryllium	Tons	2.10E-05	EPA AP-42, Table 1.1-18
		Mercury	Tons	7.00E-05	Mass balance based on USGS data
		H2SO4	Tons	3.31E-01	EPA AP-42, Table 1.1-3, footnote b.

BOILER MCBeetJuice08Feb07Rev2.xls

Attachment D Air Quality Impact Analysis

2007 Juice Run

Air Quality Impact Analysis

for the

The Amalgamated Sugar Company LLC Paul, Idaho

1.0 INTRODUCTION

An ambient air quality analysis for the Amalgamated Sugar Company LLC's (TASCO) Paul facility, for the 2007 Juice Run was completed. The analysis was performed at TASCO's corporate engineering offices.

2.0 INPUT PARAMETERS

The facility operates at a significantly reduced rate during the juice run compared to beet processing operations. Juice run emissions are approximately 10% of the beet processing emission rates. Table 1 presents the estimated PM10, NOx, SO₂, and CO emission rates for the Erie City and B&W Boilers. Table 2 details the stack parameters including stack height, exhaust temperature and the exhaust flow rate. The elevation of the boilers has been established at 1263 meters above mean sea level. Figure 1 illustrates the source and building locations.

3.0 MODEL

This revised modeling analysis utilized the Breeze suite of programs using EPA's ISCST3 model version 04269 and BPIP Prime model version 4274. Previous modeling was conducted utilizing the ISCST3-Prime model.

4.0 **METEOROLOGY**

This analysis used meteorological data (met data) modified and used by the Idaho Department of Environmental Quality (IDEQ) in their verification modeling for TASCO's PTC for the Evaporator Project (memorandum from Kevin Schilling to Dustin Holloway, September 20, 2002). This met data was initially collected at the J. R. Simplot facility in Heyburn and upper air data from the Boise Airport. As mentioned in the above listed memo, the file was modified by IDEQ to more accurately reflect mixing heights in cases where some days gave "unrealistically low mixing heights". The met data was for the period September 1, 2000 to August 31, 2001.

5.0 RECEPTOR GRID

The dispersion model included boundary receptors and two receptor grids. Figure 2 illustrates the fence line receptors and grid receptors. Figure 3 illustrates the location of the Highest Annual concentration identified in this model. The facility boundary was extended to include the TASCO owned South Farm.

The full receptor grid consists of several receptor grids. Originally, receptors were placed every 200 meters on an 8.0 km by 10.8 km area grid, (2200 grid points) with the facility placed in the middle. Receptors were excluded within the facility boundaries, which includes the beet handling area, waste ponds, coal storage area, irrigation fields and the physical plant due to restricted public access. Fence (boundary) receptors were placed at the perimeter of the facility on a 50-meter spacing starting with the northwest corner of the property owned and controlled by TASCO (as suggested in IDEQ's Air Quality Modeling Guideline). Based upon the results of initial simulations, a refined 2.5 km by 2 km receptor grid with 50 meter spacing between

receptors was placed around the facility with an eastern most boundary at the public road 400 West. The smaller grid is represented by grid patterns of 51 by 41 (2091) receptors. The placement of the smaller 50-meter grid pattern was determined by evaluating previous model output and prevailing wind patterns.

On February 10, 2003, TASCO notified the IDEQ Regional Office at Twin Falls that it had purchased 89 acres north of the facility. The area purchased is called the Gillette-89. On January 23, 2004, TASCO again notified the IDEQ Regional Office at Twin Falls that it had purchased 87 acres known as the Goitiandia property also located north of the facility. The purchase and control of this property is reflected in the updated fence line receptors north of the facility.

Terrain elevations for the receptors were obtained from USGS digital elevation model (DEM) 7.5-minute Rupert, Rupert_NW, Burley and Burley_NE quadrangles. These data have a horizontal spatial resolution of 30 meters. The receptor locations are expressed in units of UTM (NAD27) coordinates.

6.0 BACKGROUND CONCENTRATION

Background concentrations provided in Table 3, are conservative values provided by IDEQ. These values are likely well above actual concentrations. Background concentrations vary based on meteorological conditions and season. For example, 24-hour PM10 ambient monitoring data collected in Heyburn Idaho by J.R. Simplot from November 2000 thru January 2001 averaged 19.7 ug/m³ (micrograms per cubic meter).

7.0 RESULTS and CONCLUSIONS

Table 3 presents the results of the analysis. The highest model-predicted concentrations occurred at UTM Coordinates 274,600 meters Easting by 4,720,800 meters Northing. Figure 3 illustrates the location of the maximum model-predicted concentrations.

As shown, model predicted ambient concentrations along with background concentrations are well below the NAAQS's.

Table 1. Paul Modeled Pollutant Emissions – 2007 Juice Run on Coal

Pollutant		sion Rates lb/hr)
Poliutant	B & W Boiler	Erie City Boiler
	P-B1	P-B2
PM ₁₀ Long Term	8.1	1.8
PM ₁₀ Short Term		45.9
SO ₂ Long Term	8.4	0.8
SO ₂ Short Term	27.6	
NO _x Long Term	was well not	7.4
CO Short Term	47.4	et ann an

Table 2. Stack Data for Stationary Point Sources

Emission Source	Source		Stack	erani Resident	Temperature	Exit	Stack
(Point)	ID	Height (ft)	UTM Easting (m)	UTM Northing (m)	(°F)	Velocity (ft/min)	Diameter* (ft)
Erie City Boiler	P-B2	112	273819	4721176	105	1524	10
Drying Granulator	P-W1	85	273780	4721248	90.05	4776	2.0

Table 3. Maximum Predicted Concentrations

Constituent	Period	Concentrations (ug/m³)	Background Concentration (ug/m³)	Total Concentration (ug/m³)	NAAQS Concentration (ug/m³)
PM 10	24-hour 2 nd highest	20.0	73	93	150
	Annual 1 st highest	1.33	27	30.95	50
SO2	3-hour 2 nd highest	43.2	34	141	1300
	24-hour 2 nd highest	13.8	26	57.9	365
	Annual 1 st highest	1.06	8	13.8	80
CO	1-hour 2 nd highest	138	3600	3616	40,000
	8-hour 2 nd highest	46.3	2300	2305	10,000
NOx	Annual 1 st highest	5.72	17	32.5	100

Figure 1. Facility Layout Showing Buildings, Tanks, and Stacks

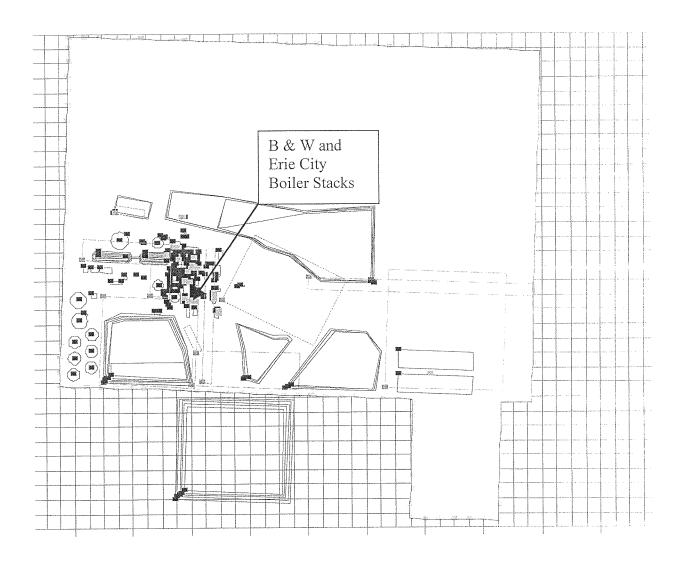
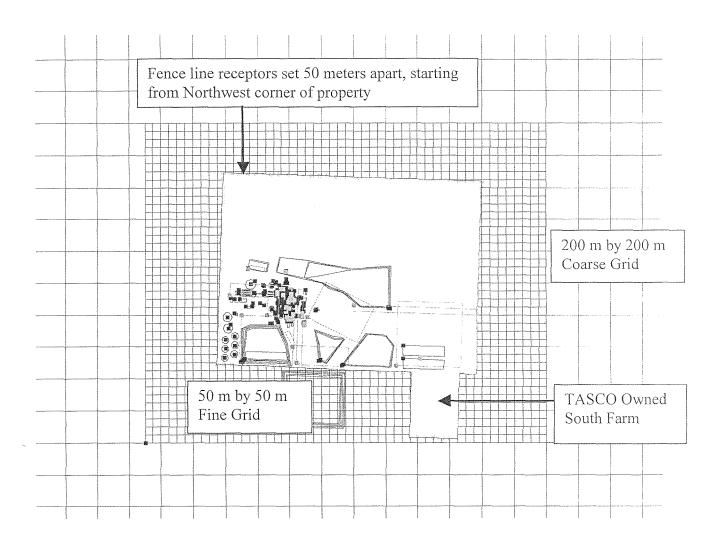



Figure 2. Fence Line and Receptor Grid

Toxic Air Pollutant
Air Quality Impact Analysis
Boiler Emissions
2007 Juice Run
Mini-Cassia Facility

Maximum Annual Air Toxics Analysis Additional 110,000 klb Boiler Steam 2007 Juice Run Mini Cassia Facility

		2002 Ap	plication	Projected 20	07 Juice Run
	AAAC	Emissions	Impact	Emissions	Impact
Pollutant	(ug/m3)	(lb/h)	(ug/m3)	(lb/h)	(ug/m3)
Arsenic Compounds	2.3E-04	1.7E-04	7.3E-06	3.6E-04	1.5E-05
Cadmium Compounds	5.6E-04	2.1E-05	9.0E-07	4.4E-05	1.9E-06
Hexavalent Chromium	8.3E-05	3.3E-05	1.5E-07	7.0E-05	3.2E-07
Nickel	4.2E-03	1.2E-04	5.0E-06	2.5E-04	1.1E-05
Acetaldehyde	4.5E-01	2.4E-04	1.0E-05	5.1E-04	2.1E-05
Formaldehyde	7.7E-02	6.0E-04	2.6E-05	1.3E-03	5.5E-05
Methyl Hydrazine	3.2E-03	7.0E-05	3.1E-06	1.5E-04	6.5E-06

APPENDIX C AIR QUALITY IMPACT ANALYSIS EVAPORATOR PROJECT

The Amalgamated Sugar Co. LLC Mini-Cassia Factory Paul, Idaho

Prepared by: ENSR_® Corporation Sacramento, California

August, 2002 Project Number 10036-003

Table 9

Maximum Annual Air Toxic Impacts at the Mini-Cassia Factory, Estimated with ISCST3

	AAAC	Maximum	Loca	ition
Pollutant	(μ g/m³)	Modeled Impact (μg/m³)	X (m)	Y (m)
Acetaldehyde	4.5E-1	4.1E-1	178	281
Arsenic Compounds	2.3E-4	7.3E-6	720	-388
Cadmium Compounds	5.6E-4	9.0E-7	720	-388
Hexavalent Chromium	8.3E-5	1.5E-7	720	-388
Formaldehyde	7.7E-2	5.2E-2	178	281
Methyl Hydrazine	3.2E-3	3.1E-6	720	-388
Nickel	4.2E-3	5.0E-6	720	-388

The air toxic compounds with the largest annual offsite impacts are formaldehyde and acetaldehyde. The maximum modeled annual acetaldehyde and formaldehyde impacts occur along the northwestern facility fence line. The locations of the maximum impacts are given in Figure 4. The peak annual impact locations for the remaining pollutants also occur along the northern property boundary.

The input and output modeling files are given in the attached CD-ROM containing the air quality modeling files.

TAP's EI 2002 Application

Air Quality Permitting Assistance/Evaporator Project Tasco Mini-Cassia Factory Project 10036-003-000

Emissions Inventory September 25, 2002

TABLE B-6. TOXIC AIR POLLUTANT EMISSION FACTORS, EMISSIONS INCREASE, AND SCREENING EMISSION LEVELS (EL)

			Bee	Beet End			Erie (Erie City Boiler		Total		
	Compound	Emission Factor (lb/ton beets)	Annual Emission Increase (Ib/yr)**	Hourly Emission Increase (Ib/hr) ⁽¹⁾	Emission Factor Reference	Emission Factor (Ib/1000 Ib steam) ^(2,3)	Annual Emission Increase (Ib/yr) ⁽⁴⁾	Hourly Emission Increase (Ib/hr) ⁽⁵⁾	Emission Factor Reference	Hourly Emission Increase (Ib/hr)	EL (lb/hr)	Exceeds EL? (yes/no)
Non-	Acetophenone	1	***		-	1.0E-06	5.4E-02	1.2E-05	AP-42, 1.1-14	1.2E-05	NA	no
Carcinogenic	Acrolein	5.7E-05	3.6E+01	8.3E-03	Source Test	2.0E-05	1.1E+00	2.3E-04	AP-42, 1.1-14	8.5E-03	0.017	no
Compounds	Ammonia	6.4E-01	4.1E+05	9.3E+01	Source Test	1 2			AP-42, 1.1-14	9.3E+01	1.2	yes
*****	Antimony		-		1	1.3E-06	6.5E-02	1.4E-05	AP-42, 1.1-18	1.4E-05	0.033	ou
	Benzyl Chloride	-		****	-	4.9E-05	2.5E+00	5.6E-04	AP-42, 1.1-14	5.6E-04	NA	no
	Bromoform	-	11	-	I.	2.7E-06	1.4E-01	3.1E-05	AP-42, 1.1-14	3.1E-05	0.333	no
	Carbon Disulfide	-	The U.S.	describer chromers reference describer de l'article de l'	in 95	9.0E-06	4.7E-01	1.0E-04	AP-42, 1.1-14	1.0E-04	2	no
	2-Chloroacetophenone			5.2	t I	4.9E-07	2.5E-02	5.6E-06	AP-42, 1.1-14	5.6E-06	NA	no
	Chlorobenzene	1	11.00	***	-	1.5E-06	8.0E-02	1.8E-05	AP-42, 1.1-14	1.8E-05	23.3	no
	Chromium (Total)	1	4.41	E to		1.8E-05	9.4E-01	2.1E-04	AP-42, 1.1-18	2.1E-04	0.033	no
	Cobalt		***	-	1	7.0E-06	3.6E-01	8.0E-05	AP-42, 1.1-18	8.0E-05	0.0033	no
	Cumene	1	ı]	-	3.7E-07.	1.9E-02	4.2E-06	AP-42, 1.1-14	4.2E-06	16.3	no
-	Cyanide	1	1		1	1.7E-04	9.1E+00	2.0E-03	AP-42, 1.1-14	2.0E-03	0.333	no
to and a second	2,4-Dinitrotoluene	-	1	ļ	1	1.9E-08	1.0E-03	2.2E-07	AP-42, 1.1-14	2.2E-07	NA	no
	Dimethyl Sulfate	!	tion.	1	-	3.3E-06	1.7E-01	3.8E-05	AP-42, 1.1-14	3.8E-05	NA	no
***************************************	Ethyl Benzene	1	-		1	6.5E-06	3.4E-01	7.5E-05	AP-42, 1.1-14	7.5E-05	29	no
-	Ethyl Chloride	1	1	1		2.9E-06	1.5E-01	3.3E-05	AP-42, 1.1-14	3.3E-05	176	no
	Ethylene Dichloride	1	1 3	!	1	2.8E-06	1.5E-01	3.2E-05	AP-42, 1.1-14	3.2E-05	2.667	no
in the second squares	Fluorides, as F	1	1		I	1.0E-02	5.4E+02	1.2E-01	AP-42, 1.1-15	1.2E-01	0.167	no
	Hexane	1	-	1	;	4.7E-06	2.4E-01	5.3E-05	AP-42, 1.1-14	5.3E-05	12	no
	Hydrogen Chloride	-			-	1.1E-02	5.8E+02	1.3E-01	2001 TCRI	1.3E-01	0.05	yes
***************************************	Hydrogen Sulfide		1,	E 100	1	QN					0.933	no
	Isophorone	-	1	8149	1	4.0E-05	2.1E+00	4.6E-04	AP-42, 1.1-14	4.6E-04	1.867	no
	Lead		as no	antident and the second and the seco	1	2.9E-05	1.5E+00	3.3E-04	AP-42, 1.1-18	3.3E-04	NA	no
	Magnesium	;	L		ŀ	7.7E-04	4.0E+01	8.8E-03	AP-42, 1.1-18	8.8E-03	NA	no

Air Quality Permitting Assistance/Evaporator Project Tasco Mini-Cassia Factory
Project 10036-003-000
Emissions Inventory
September 25, 2002

TABLE B-6. TOXIC AIR POLLUTANT EMISSION FACTORS, EMISSIONS INCREASE, AND SCREENING EMISSION LEVELS (EL)

			Bec	Beef End			Erie	Erie City Boiler		Total		
	Compound	Emission Factor (Ib/ton beets)	Annual Emission Increase (Ib/yr) ⁽¹⁾	Hourly Emission Increase (Ibhr) ⁽¹⁾	Emission Factor Reference	Emission Factor (Ib/1000 Ib steam) ^(2,3)	Annual Emission Increase (Ib/yr) ⁽⁴⁾	Hourly Emission Increase (Ibfhr) ⁽⁶⁾	Emission Factor Reference	Hourly Emission Increase (Ib/hr)	EL (lb/hr)	Exceeds EL? (yes/no)
	Manganese	1			1.4	3.4E-05	1.8E+00	3.9E-04	AP-42, 1.1-18	3.9E-04	0.333	no
	Mercury		***************************************		1	5.8E-06	3.0E-01	6.6E-05	AP-42, 1.1-18	6.6E-05	200.0	no
Non-	Methyl Bromide	***	1			1.1E-05	5.8E-01	1.3E-04	AP-42, 1.1-14	1.3E-04	1.27	no
Carcinogenic	Methyl Chloride	t	1	200	1	3.7E-05	1.9E+00	4.2E-04	AP-42, 1.1-14	4.2E-04	298.9	no
Compounds	Methyl Ethyl Ketone	1.2E-06	7.4E-01	1.7E-04	Source Test	2.7E-05	1.4E+00	3.1E-04	AP-42, 1.1-14	4.8E-04	39.3	no
	Methyl Methacylate	1	41	10.00		1.4E-06	7.3E-02	1.6E-05	AP-42, 1.1-14	1.6E-05	27.3	no
	Methyl Tert Butyl Ether		10.00	A TO SECURE AND A SECURE ASSESSMENT OF THE SECURE ASSESSMENT ASSES		2.4E-06	1.3E-01	2.8E-05	AP-42, 1.1-14	2.8E-05	NA	no
	Naphthalene	1	1	***************************************		9.0E-07	4.7E-02	1.0E-05	AP-42, 1.1-13	1.0E-05	3.33	no
	Phenol	;			-	1.1E-06	5.8E-02	1.3E-05	AP-42, 1.1-14	1.3E-05	1.27	OU
	Propionaldehyde			PER SAC		2.6E-05	1.4E+00	3.0E-04	AP-42, 1.1-14	3.0E-04	0.0287	OL.
	Selenium	-	45.44		***	9.0E-05	4.7E+00	1.0E-03	AP-42, 1.1-18	1.0E-03	0.013	no
	Styrene		9, 44	***************************************	1	1.7E-06	9.1E-02	2.0E-05	AP-42, 1.1-14	2.0E-05	6.67	no
	Sufuric Acid	7-11	-	1	ı	1.0E-02	5.4E+02	1.2E-01	AP-42, 1.1-3	1.2E-01	0.067	yes
	Toluene		ŀ	I	-	1.7E-05	8.7E-01	1.9E-04	AP-42, 1.1-14	1.9E-04	25	no
	Xylene (Total)	1	1	-	I	2.6E-06	1.3E-01	2.9E-05	AP-42, 1.1-14	2.9E-05	29	no
	Vinyl Acetate	ł	1	1	1	5.3E-07	2.8E-02	6.1E-06	AP-42, 1.1-14	6.1E-06	NA	no
0.000	Acetaldehyde	9.6E-03	6.1E+03	7.0E-01	Source Test	4.0E-05	2.1E+00	2.4E-04	AP-42, 1.1-14	7.0E-01	3.0E-03	yes
Carcilloge IIC	Arsenic Compounds	ì	ŀ	1	1	2.9E-05	1.5E+00	1.7E-04	AP-42, 1.1-18	1.7E-04	1.5E-06	yes
Compounds	Asbestos	1	ł	ţ	i e	ON.					ND	
	Benzene	4 2	I.		1	9.0E-05	4.7E+00	5.4E-04	AP-42, 1.1-14	5.4E-04	8.0E-04	no
	Beryllium Compounds	1	į	E a	1	1.5E-06	7.6E-02	8.7E-06	AP-42, 1.1-18	8.7E-06	2.8E-05	no
	Bis(2-ethylhexyl)phthalate	1	1	-	1	5.1E-06	2.6E-01	3.0E-05	AP-42, 1.1-14	3.0E-05	2.8E-02	no
	Cadmium Compounds		i.	1	1	3.5E-06	1.9E-01	2.1E-05	AP-42, 1.1-18	2.1E-05	3.7E-06	yes
	Chloroform		1	E E	1	4.1E-06	2.1E-01	2.4E-05	AP-42, 1.1-14	2.4E-05	2.8E-04	no
	Chromium 6+ Compounds	1	I.	- 1	Į,	5.5E-06	2.9E-01	3.3E-05	AP-42, 1.1-18	3.3E-05	5.6E-07	yes

Air Quality Permitting Assistance/Evaporator Project

Tasco Mini-Cassia Factory

Project 10036-003-000

Emissions Inventory September 25, 2002

TABLE B-6. TOXIC AIR POLLUTANT EMISSION FACTORS, EMISSIONS INCREASE, AND SCREENING EMISSION LEVELS (EL)

	Exceeds EL? (yes/no)	ou	yes	yes	ОП	yes	인	OU	OU	ou	no
	EL (Ib/hr)	3.0E-05	5.1E-04	2.2E-05	1.6E-03	2.7E-05	9.1E-05	2.0E-06	1.3E-02	4.2E-04	9.40E-04
Total	Hourly Emission Increase (Ib/hr)	5.0E-07	8.8E-02	7.0E-05	1.2E-04	1.2E-04	3.2E-06	1.6E-07	1.8E-05	8.3E-06	
	Emission Factor Reference	AP-42, 1.1-14	AP-42, 1.4-3	AP-42, 1.1-14	AP-42, 1.1-14	AP-42, 1.1-18	AP-42, 1.1-13	AP-42, 1.1-13	AP-42, 1.1-14	AP-42, 1.1-14	
Erie City Boiler	Hourly Emission Increase (Ib/hr) ⁽⁵⁾	5.0E-07	6.0E-04	7.0E-05	1.2E-04	1.2E-04	3.2E-06	1.6E-07	1.8E-05	8.3E-06	
Erie C	Annual Emission Increase (Ib/yr) ⁽⁴⁾	4.4E-03	5.3E+00	6.2E-01	1.1E+00	1.0E+00	2.8E-02	1.4E-03	1.6E-01	7.3E-02	
	Emission Factor (Ib/1000 Ib steam) ^[2,3]	8.4E-08	1.0E-04	1.2E-05	2.0E-05	1.9E-05	5.4E-07	2.7E-08	3.0E-06	1.4E-06	ND
	Emission Factor Reference	1	Source Test	3		}	5 2	i	ł	1	
et End	Hourly Emission Increase (Ib/hr) ⁽¹⁾	an 100	8.8E-02	1	A 10	ì	1	ž	*****	1	***
Beet	Emission Arnual Factor Emission (Ib/ton Increase beets) (Ib/yr) ⁽⁴⁾	1	7.7E+02	i		1	1	I 1	1	1	-
	Emission Factor (lb/fon beets)	1	1.2E-03	-		1	ı	1		1	
	Compound	Ethylene Dibromide	Formaldehyde	Methyl Hydrazine	Methylene Chloride	Nickel	PAHs	POM	Tetrachloroethylene	1,1,1-Trichloroethane	Vinyl Chloride
						o incoming of	Carcinogonic	spinodino.			

ND - Value not available

- (1) Increased annual Beet End carcinogenic and non-carcinogenic emissions were calculated from the emission factor and increased annual beet slice in Table B-1. Increased hourly Beet End non-carcinogenic emissions were calculated from the emission factor and increased daily beet slice in Table B-1.
- (2) AP-42 emission factors for bituminous and subbituminous coal were compared with emission factors for gas after being converted to units of lb/1000 lb steam. The larger factors were used in this inventory. The emission factor for formaldehyde was the only larger factor for gas.
- (3) AP-42 coal emission factors in units of lb/ton coal were converted to units of lb/1,000 lb steam using 1,080 Btu/lb steam, 9,700 Btu/lb coal, and the assumption of 80% efficiency for the Boiler. AP-42 gas emission factors in units of lb/MMcf gas were converted to units of lb/1,000 lb steam using 1,080 Btu/lb steam, 1,000 Btu/MMcf, and the assumption of 80% efficiency for the Boiler.
 - (4) Increased annual boiler carcinogenic and non-carcinogenic emissions were calculated from the emission factor and increased annual steam utilization in Table B-1.
- therefore does not increase hourly boiler utilization. However, hourly emission increase has been conservatively estimated by dividing the annual emissions increase by the projected (5) For non-carcinogenic compounds emitted from the boiler, there is no hourly emissions increase because this project does not increase the hourly sugar production rate and annual operating hours (190 days *24 hr/day = 4,560 hr).
- (6) Hourly carcinogenic compound emisions from the Beet End and Erie City boiler were annualized by dividing the annual increase by 8,760 hours.

TAP's EI 110,000 Klb Steam

110,000 Juice Run Steam Incraese Tasco Mini-Cassia Factory Emissions Inventory February 22, 2007

IC AIR POLLUTANT EMISSION FACTORS, EMISSIONS INCREASE, AND SCREENING EMISSION LEVELS (EL)")

			Erie C	ity Boiler		Total		
	Compound	Emission Factor (Ib/1000 lb steam) ^(2,3)	Annual Emission Increase (lb/yr) ⁽⁴⁾	Hourly Emission Increase (lb/hr) ⁽⁵⁾	Emission Factor Reference	Hourly Emission Increase (Ib/hr)	EL (lb/hr)	Exceeds EL? (yes/no)
Non-	Acetophenone	1.0E-06	1.1E-01	2.5E-05	AP-42, 1.1-14	2.5E-05	NA	no
Carcinogenic	Acrolein	2.0E-05	2.2E+00	4.9E-04	AP-42, 1.1-14	4.9E-04	0.017	no
Compounds	Ammonia			~~	AP-42, 1.1-14		1.2	no
	Antimony	1.3E-06	1.4E-01	3.0E-05	AP-42, 1.1-18	3.0E-05	0.033	no
	Benzyl Chloride	4.9E-05	5.4E+00	1.2E-03	AP-42, 1.1-14	1.2E-03	NA	no
	Bromoform	2.7E-06	3.0E-01	6.5E-05	AP-42, 1.1-14	6.5E-05	0.333	no
	Carbon Disulfide	9.0E-06	1.0E+00	2.2E-04	AP-42, 1.1-14	2.2E-04	2	no
	2-Chloroacetophenone	4.9E-07	5.4E-02	1.2E-05	AP-42, 1.1-14	1.2E-05	NA	no
	Chlorobenzene	1.5E-06	1.7E-01	3.7E-05	AP-42, 1.1-14	3.7E-05	23.3	no
	Chromium (Total)	1.8E-05	2.0E+00	4.4E-04	AP-42, 1.1-18	4.4E-04	0.033	no
	Cobalt	7.0E-06	7.7E-01	1.7E-04	AP-42, 1.1-18	1.7E-04	0.0033	no
	Cumene	3.7E-07	4.1E-02	8.9E-06	AP-42, 1.1-14	8.9E-06	16.3	no
	Cyanide	1.7E-04	1.9E+01	4.2E-03	AP-42, 1.1-14	4.2E-03	0.333	no
	2,4-Dinitrotoluene	1.9E-08	2.1E-03	4.7E-07	AP-42, 1.1-14	4.7E-07	NA	no
	Dimethyl Sulfate	3.3E-06	3.7E-01	8.1E-05	AP-42, 1.1-14	8.1E-05	NA	no
	Ethyl Benzene	6.5E-06	7.2E-01	1.6E-04	AP-42, 1.1-14	1.6E-04	29	no
	Ethyl Chloride	2.9E-06	3.2E-01	7.1E-05	AP-42, 1.1-14	7.1E-05	176	no
	Ethylene Dichloride	2.8E-06	3.1E-01	6.7E-05	AP-42, 1.1-14	6.7E-05	2.667	no
Ethyl Chloride 2.9E-06 3.2E-01 7.1E-05 AP-42, 1 Ethylene Dichloride 2.8E-06 3.1E-01 6.7E-05 AP-42, 1 Fluorides, as F 1.0E-02 1.1E+03 2.5E-01 AP-42, 1 Hexane 4.7E-06 5.1E-01 1.1E-04 AP-42, 1 Hydrogen Chloride 1.1E-02 1.2E+03 2.7E-01 2001 To Hydrogen Sulfide ND Isophorone 4.0E-05 4.4E+00 9.7E-04 AP-42, 1	1.0E-02	1.1E+03	2.5E-01	AP-42, 1.1-15	2.5E-01	0.167	yes	
	Hexane	4.7E-06	5.1E-01	1.1E-04	AP-42, 1.1-14	1.1E-04	12	no
	2.7E-01	2001 TCRI	2.7E-01	0.05	yes			
			0.933	no				
	Isophorone	4.0E-05	4.4E+00		AP-42, 1.1-14	9.7E-04	1.867	no
	Lead	2.9E-05	3.2E+00	7.1E-04	AP-42, 1.1-18	7.1E-04	NA	no
	Magnesium	7.7E-04	8.4E+01	1.8E-02	AP-42, 1.1-18	1.8E-02	NA	no
Hydrogen Chloride 1.1E-02 1.2E+03 2.7E-01 2001 TCRI 2.7E-01 Hydrogen Sulfide ND ND Sephorone 4.0E-05 4.4E+00 9.7E-04 AP-42, 1.1-14 9.7E-04 Lead 2.9E-05 3.2E+00 7.1E-04 AP-42, 1.1-18 7.1E-04 Magnesium 7.7E-04 8.4E+01 1.8E-02 AP-42, 1.1-18 1.8E-02 Manganese 3.4E-05 3.8E+00 8.2E-04 AP-42, 1.1-18 8.2E-04 Mercury 5.8E-06 6.4E-01 1.4E-04 AP-42, 1.1-18 1.4E-04	0.333	no						
	I	1.4E-04	0.007	no				
Non-	Methyl Bromide	1.1E-05	1.2E+00	2.7E-04	AP-42, 1.1-14	2.7E-04	1.27	no
Carcinogenic	Methyl Chloride	3.7E-05	4.1E+00	8.9E-04	AP-42, 1.1-14	8.9E-04	6.867	no
Compounds	Methyl Ethyl Ketone	2.7E-05	3.0E+00	6.5E-04	AP-42, 1.1-14	6.5E-04	39.3	no
	Methyl Methacylate	1.4E-06	1.5E-01	3.4E-05	AP-42, 1.1-14	3.4E-05	27.3	no
	Methyl Tert Butyl Ether	2.4E-06	2.7E-01	5.9E-05	AP-42, 1.1-14	5.9E-05	NA	no
	Naphthalene	9.0E-07	1.0E-01	2.2E-05	AP-42, 1.1-13	2.2E-05	3.33	no
	Phenol	1.1E-06	1.2E-01	2.7E-05	AP-42, 1.1-14	2.7E-05	1.27	no
	Propionaldehyde	2.6E-05	2.9E+00	6.4E-04	AP-42, 1.1-14	6.4E-04	0.0287	no
	Selenium	9.0E-05	1.0E+01	2.2E-03	AP-42, 1.1-18	2.2E-03	0.013	no
	Styrene	1.7E-06	1.9E-01	4.2E-05	AP-42, 1.1-14	4.2E-05	6.67	no
	Sufuric Acid	1.0E-02	1.1E+03	2.5E-01	AP-42, 1.1-3	2.5E-01	0.067	yes
	Toluene	1.7E-05	1.8E+00	4.0E-04	AP-42, 1.1-14	4.0E-04	25	no
	Xylene (Total)	2.6E-06	2.8E-01	6.2E-05	AP-42, 1.1-14	6.2E-05	29	no
(Vinyl Acetate	5.3E-07	5.8E-02	1.3E-05	AP-42, 1.1-14	1.3E-05	NA	no
<u> </u>	Acetaldehyde	4.0E-05	4.4E+00	5.0E-04	AP-42, 1.1-14	5.0E-04	3.0E-03	no
Carcinogenic	Arsenic Compounds	2.9E-05	3.1E+00	3.6E-04	AP-42, 1.1-18	3.6E-04	1.5E-06	yes
Compounds ⁽⁶⁾	Asbestos	ND					ND	

110,000 Juice Run Steam Incraese Tasco Mini-Cassia Factory Emissions Inventory February 22, 2007

AIC AIR POLLUTANT EMISSION FACTORS, EMISSIONS INCREASE, AND SCREENING EMISSION LEVELS (EL)")

			Erie C	ity Boiler		Total		
	Compound	Emission Factor (lb/1000 lb steam) ^(2,3)	Annual Emission Increase (lb/yr) ⁽⁴⁾	Hourly Emission Increase (Ib/hr) ⁽⁵⁾	Emission Factor Reference	Hourly Emission Increase (lb/hr)	EL (lb/hr)	Exceeds EL? (yes/no)
	Benzene	9.0E-05	1.0E+01	1.1E-03	AP-42, 1.1-14	1.1E-03	8.0E-04	yes
	Beryllium Compounds	1.5E-06	1.6E-01	1.8E-05	AP-42, 1.1-18	1.8E-05	2.8E-05	no
	Bis(2-ethylhexyl)phthalate	5.1E-06	5.6E-01	6.4E-05	AP-42, 1.1-14	6.4E-05	2.8E-02	no
	Cadmium Compounds	3.5E-06	3.9E-01	4.5E-05	AP-42, 1.1-18	4.5E-05	3.7E-06	yes
	Chloroform	4.1E-06	4.5E-01	5.2E-05	AP-42, 1.1-14	5.2E-05	2.8E-04	no
	Chromium 6+ Compounds	5.5E-06	6.0E-01	6.9E-05	AP-42, 1.1-18	6.9E-05	5,6E-07	yes
	Ethylene Dibromide	8.4E-08	9.2E-03	1.0E-06	AP-42, 1.1-14	1.0E-06	3.0E-05	no
	Formaldehyde	1.0E-04	1.1E+01	1.3E-03	AP-42, 1.4-3	1.3E-03	5.1E-04	yes
	Methyl Hydrazine	1.2E-05	1.3E+00	1.5E-04	AP-42, 1.1-14	1.5E-04	2.2E-05	yes
	Methylene Chloride	2.0E-05	2.2E+00	2.5E-04	AP-42, 1.1-14	2.5E-04	1.6E-03	no
	Nickel	1.9E-05	2.1E+00	2.4E-04	AP-42, 1.1-18	2.4E-04	2.7E-05	yes
Carcinogenic	PAHs	5.4E-07	5.9E-02	6.8E-06	AP-42, 1.1-13	6.8E-06	9.1E-05	no
Compounds ⁽⁶⁾	POM	2.7E-08	3.0E-03	3.4E-07	AP-42, 1.1-13	3.4E-07	2.0E-06	no
	Tetrachloroethylene	3.0E-06	3.3E-01	3.8E-05	AP-42, 1.1-14	3.8E-05	1.3E-02	no
	1,1,1-Trichloroethane	1.4E-06	1.5E-01	1.7E-05	AP-42, 1.1-14	1.7E-05	4.2E-04	no
	Vinyl Chloride	ND					9.40E-04	no

Total (tons/y)

2

ND - Value not available

- (1) Increased annual Beet End carcinogenic and non-carcinogenic emissions were calculated from the emission factor and increased annual beet slice in Table B-1. Increased hourly Beet End non-carcinogenic emissions were calculated from the emission factor and increased daily beet slice in Table B-1.
- (2) AP-42 emission factors for bituminous and subbitumiuous coal were compared with emission factors for gas after being converted to units of lb/1000 lb steam. The larger factors were used in this inventory. The emission factor for formaldehyde was the only larger factor for gas.
- (3) AP-42 coal emission factors in units of lb/ton coal were converted to units of lb/1,000 lb steam using 1,080 Btu/lb steam, 9,700 Btu/lb coal, and the assumption of 80% efficiency for the Boiler. AP-42 gas emission factors in units of lb/MMcf gas were converted to units of lb/1,000 lb steam using 1,080 Btu/lb steam, 1,000 Btu/MMcf, and the assumption of 80% efficiency for the Boiler.
- (4) Increased annual boiler carcinogenic and non-carcinogenic emissions were calculated from the emission factor and increased annual steam utilization in Table B-1.
- (5) For non-carcinogenic compounds emitted from the boiler, there is no hourly emissions increase because this project does not increase the hourly sugar production rate and therefore does not increase hourly boiler utilization. However, hourly emission increase has been conservatively estimated by dividing the annual emissions increase by the projected annual operating hours (190 days *24 hr/day = 4,560 hr).
- (6) Hourly carcinogenic compound emisions from the Beet End and Erie City boiler were annualized by dividing the annual increase by 8,760 hours.

Attachment E

Proposed Revisions to Condition 2.4 of the No. 6 Evaporator Permit to Construct

AIR QUALITY PERMIT TO CONSTRUCT NUMBER: P-050401

Permittee: T/

TASCO - MiniCassia Facility

Location: Paul, Idaho

Facility ID No. 067-00001

Date Issued:

June 14, 2006

2. FACILITY LIMITS

2.1 Process Description

The No. 6 Evaporator is used to evaporate water from sugar juices to produce dry granulated sugar.

Emissions Limits

2.2 Opacity Limit

Emissions from any stack, vent, or functionally equivalent opening associated with the processing of beets or the production of sugar, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625 (Rules for the Control of Air Pollution in Idaho). Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

2.3 NO_x Limit

For the 2006 campaign juice run, the B&W boiler shall implement NO_x reduction improvements to ensure net NO_x emissions increases are no greater than the significance level.

Operating Requirements

2.4 Beet Throughput Limits

- Throughput of beets to the facility shall not exceed 19,550 T/day.
- Throughput of beets to the facility shall not exceed 3,200,000 tons per campaign year.

2.5 Steam Production Limit

- **2.5.1** Steam production from the facility's boilers shall not exceed 1,830,000 Klbs of steam per campaign year (klb/yr) except as allowed by Condition 2.5.2.
- **2.5.2** For the 2006 campaign year, the permittee shall not exceed an additional 110,000 Klbs steam from any combination of: (a) the B&W boiler using coal; or (b) the Erie City or Nebraska boilers using natural gas.

2.6 Reasonable Control of Fugitive Emissions

All reasonable precautions shall be taken to prevent PM from becoming airborne as required in IDAPA 58.01.01.651. In determining what is a reasonable, consideration will be given to factors such as the proximity of dust-emitting operations to human habitations and/or activities and atmospheric conditions that might affect the movement of PM. Some of the reasonable precautions include, but are not limited to, the following:

- Use, where practical, of water or chemicals for control of dust in the demolition of existing buildings or structures, construction operations, the grading of roads, or the clearing of lands;
- Application, where practical, of asphalt, oil, water or suitable chemicals to, or covering of dirt roads, material stockpiles, and other surfaces which can create dust;